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A Field-Programmable Gate Array Implementation
of the Serially Concatenated Pulse-Position

Modulation Decoder
M. K. Cheng,1 M. A. Nakashima,2 J. Hamkins,1 B. E. Moision,1 and M. Barsoum1

We describe the development of a hardware turbo decoder on a field-program-
mable gate array for high-speed free-space laser communications. This system will
be used by NASA’s Mars Laser Communications Demonstration project on the Mars
Telecommunication Orbiter, the first use of high-speed laser communication from
deep space. The error-correction code design has been shown to perform within
0.9 dB of the Shannon capacity on a nominal mission operating condition. The
implemented decoder achieves a throughput of 1.23 mega-bits per second (Mbps).
We outline potential improvements on the current design that can lead to a 50-Mbps
decoder.

I. Introduction

The Mars Laser Communication Demonstration (MLCD) is planned to be the first demonstration of
optical communications from a satellite in deep space to a ground receiver terminal on Earth. Nominal
downlink (from spacecraft to Earth) data rates of over 1 Mbps (mega-bits per second) are desired.
However, with certain operating conditions, communication at 50 Mbps can be demonstrated.

NASA’s legacy error-correction code (ECC) design for radio frequency (RF) communication is the
concatenation of an inner convolutional code and an outer Reed–Solomon (RS) code [1]. Decoding is
performed in one pass, and hard bit decisions are made. The decoding cost is high due to the large
constraint length of the inner code. The discovery of turbo codes [2,3] and their suboptimal but effective
low-complexity iterative decoding approach has generated much excitement in the coding community. The
MLCD ECC design is the serial concatenation of an inner modulation code and an outer convolutional
code. Modulation is a mapping of bits to symbols transmitted on the channel. This mapping may be
considered a code, and demodulation as decoding of the code. Conventionally, the modulation and ECC
are decoded independently, with the demodulator sending its results to the ECC decoder. However, we
may consider the combination of the modulation and the ECC as a single large code, which maps user
information bits directly to the symbols transmitted on the channel. We could gain several decibels in
performance by decoding the ECC and modulation jointly as a single code relative to decoding them
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independently. An exact maximum-likelihood (ML) decoding of the joint modulation–ECC code would,
in most cases of practical interest, be prohibitively complex. However, we may approximate true ML
decoding while limiting the decoder complexity by iteratively decoding the modulation and the ECC.
This is in fact the “turbo” principle, and more details can be found in [4].

Moision and Hamkins described in [5] their approach in designing the serially concatenated pulse-
position modulation (SCPPM) code for MLCD. They also outlined the soft-in, soft-out (SISO) decoding
algorithm used by the decoder. This article is a companion to [5]. We provide the implementation
details that led to the hardware development of the SCPPM decoder on a field-programmable gate array
(FPGA).

II. Decoder Architecture

A high-level block diagram of the SCPPM decoder is illustrated in Fig. 1. The symbol I indicates
input to the constituent decoders, and O indicates output. The inner decoder operates on the modulation
code, and the outer decoder operates on the convolutional code. Each code is described by a trellis. For
each trellis, the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [6] is used to compute the a posteriori log-
likelihood ratios (LLRs) from a priori LLRs by traversing the trellis in forward and backward directions.
Extrinsic information (the difference between the a posteriori and a priori LLRs) is exchanged in iteration
rather than the a posteriori LLRs to reduce undesired feedback.

Fig. 1.  The SCPPM decoder.
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A. The Log-Domain SISO Decoding

Each SISO module in the SCPPM decoder applies the BCJR algorithm to the trellis that describes the
corresponding code. We use the notation from [5] and simply restate the calculation of the branch and
state metrics inside the inner SISO module. To facilitate hardware realization, the metric computations
are done in the log domain, which translates multiplications into additions and is less sensitive to round-off
errors in fixed-point arithmetic.

Let V be the set of states and E be the set of directed labeled edges in a trellis. Each edge e ∈ E has
an initial state i (e) and a terminal state t (e). For each edge e and stage k of the inner code trellis, the
BCJR algorithm traverses the trellis in the forward direction to calculate the branch metric as

γ̄k(e) = πk(a; I) + πk(c; I)

The term πk(c; I) is the PPM symbol LLR provided by the channel, and the term πk(a; I) is the a priori
symbol LLR provided by the outer decoder. In the same forward trellis pass, the BCJR algorithm
calculates a forward state metric for each state s and stage k as

ᾱk(s) = ln
∑

e:t(e)=s∈V
exp

(
ᾱk−1

(
i(e)

)
+ γ̄k(e)

)
(1)
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The algorithm then traverses the trellis in the backward direction to calculate a backward state metric
as

β̄k(s) = ln
∑

e:i(e)=s∈V
exp

(
β̄k+1

(
t(e)

)
+ γ̄k+1(e)

)
(2)

The output LLRs are a function of ᾱ’s, β̄’s, and γ̄’s. The outer SISO operates on the trellis that describes
the outer code, using the same principle.

B. The
∗

max Operation

Implementation of the BCJR algorithm in the log domain requires taking the log of sums of exponen-
tials. This function is defined as the

∗
max operation [7]:

∗
max (x, y) �= ln (ex + ey) (3)

= max (x, y) + ln
(
1 + e−|x−y|

)

It is also noted that

∗
max (x, y, z) = ln (ex + ey + ez) (4)

=
∗

max
( ∗
max (x, y) , y

)

By pre-computing log(1 + e−|x−y|) and storing the results in a table, we have a low-complexity imple-
mentation of

∗
max in hardware. More details are presented in Section III.C.

C. Simplified Computation of the Inner Modulation Code Trellis

The inner modulation code consists of an accumulator followed by a PPM mapper. The trellis that
describes this accumulate-PPM (APPM) code contains many parallel edges, and this causes a bottleneck
in the computation of the ᾱ’s and β̄’s. To reduce this latency, Barsoum and Moision [8,9] developed a
method of grouping the individual trellis edge calculations per stage into one, and this combined value
can be computed in a pipeline.

III. Hardware Implementation

We now discuss some of the design decisions we made in implementing the SCPPM decoder on an
FPGA.

A. Metric Quantization

In software, the decoder metrics ᾱ’s, β̄’s, γ̄’s, λ̄’s, and channel likelihoods π (c, I)’s are floating-point
values. However, in hardware, these metrics are represented by fixed-point integers in two’s complement
form. We discuss the procedure used to determine the quantization bit width.

The input quantization parameters are available bit width w, base b, and precision p. Let f denote a
floating-point number and q denote an integer. We represent all decoder variables (metrics) as quantized
integers, that is,
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q = round (f · bp) (5)

where b = 2 but could be any number. We also clip the quantized variable at maximum and minimum
allowable integer values, that is,

q ∈
[
−2w−p−1 + 1, 2w−p−1 − 1

]
(6)

The β̄’s are stored in the FPGA block random-access memories (BRAMs) while all other variables
are computed as needed. For a fixed performance loss, clipping of all decoder metrics will require an
overall larger number of quantization bits than clipping only the ᾱ’s, β̄’s, and channel LLRs. This larger
quantization requirement will translate into a higher BRAM consumption in storing the β̄’s and therefore
can limit the number of decoders that are able to fit onto a single FPGA. Hence, we clip only the ᾱ’s,
β̄’s, and channel LLRs and allow the other metrics in the data path to grow without clipping. The ᾱ’s
and β̄’s are also normalized at every stage by subtracting the largest ᾱ and β̄ of that stage. Since the ᾱ’s
and β̄’s are both normalized and clipped, the remaining decoder metrics will not grow without bound.
Moreover, limiting the number of clipping points can facilitate debugging because every clipping point
adds a potential source of error. In the debugging process, each clipping point will have to be examined
during traceback, whereas if most of the metrics are allowed to grow in the data path without being
passed through a clipping circuit, the number of potential problem spots can be reduced significantly.

1. Binary Precision. To determine the number of bits required to represent binary precision, we
compare the simulated decoder performance using varying p while choosing w large. The results are
plotted versus word-error rate (WER) in Fig. 2(a). The parameters are the PPM order, M ; the slot
width in nanoseconds, Ts; the background noise in photons per slot, nb; and the signal in photons per
pulse, ns. The number pair (w, p) in the legend indicates the total number of bits used and the number
of bits used for binary precision. For example, (18, 3) means 18 total bits used, 15 bits for dynamic range
and 3 bits for binary precision. As expected, the decoding performance approaches that of floating point
as p is increased. To minimize hardware cost, we select the least number of bits required to maintain an
acceptable loss in fixed-point performance. With p = 2, the loss in signal energy is less than 0.2 dB, and
with p = 3, the loss is less than 0.1 dB. We choose to use 3 bits to represent binary precision.

2. Dynamic Range. To determine the number of bits required to represent dynamic range, we fix
the binary precision p to 3 and reduce the total number of bits used until the performance loss becomes
unacceptable. The results are plotted versus WER in Fig. 2(b). Note the occurrence of an error floor
when there is an insufficient number of bits used to represent the dynamic range. To meet a requirement
of a WER floor below 10−4, we select 5 bits to use for dynamic range. Our FPGA quantization scheme,
therefore, uses a total of 8 bits: 5 bits for dynamic range and 3 bits for binary precision.

B. Partial Statistics

To reduce the channel-likelihood storage requirements of iterative decoding and the amount of data
transfer between the decoder and receiver, we may discard the majority of the channel likelihoods [10],
operating the decoder using only the remainder. This may be accomplished by transmitting only a subset
consisting of the largest likelihoods during each symbol duration—the likelihoods corresponding to the
slots with the largest number of observed photons. The observation of the remaining slots is set to the
mean of a noise slot. In low background noise, a small subset may be chosen with negligible loss.

C. The
∗

max Look-Up Table

The natural log function is costly to realize in hardware. The
∗

max operation, therefore, is implemented
as a look-up table (LUT). Since all variables are to be represented by fixed-point integers, for any real
number x we assign its quantized value to be
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Fig. 2.  To determine the quantization parameters, we simulate the decoder WER 
performance with varying (a) binary precision and (b) dynamic range for a typical 
operating point.
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xq =




−2w−p−1 + 1 round (x · 2p) ≤ −2w−p−1 + 1

round (x · 2p) −2w−p−1 + 1 < round (x · 2p) < 2w−p−1 − 1

2w−p−1 − 1 2w−p−1 − 1 ≤ round (x · 2p)

(7)

Let the adjustment term in Eq. (3) be defined as

∆ �= ln
(
1 + e−|x−y|

)
≈ ln

(
1 + e−

|xq−yq|
2p

)
(8)

Montorsi and Benedetto [11] suggested a way of generating the fixed-point
∗

max LUT with m entries,
where m is the smallest positive integer that satisfies

ln
(
1 + e−m/2p

)
≤ 2−(p+1) (9)

Solving for m, we have

m =
⌈
−2p · ln

(
e2−(p+1) − 1

)⌉
(10)

Each entry in the fixed-point
∗

max LUT is indexed by the difference between the two fixed-point arguments
δ = |xq − yq| and has a value calculated as

v (δ) = round
(
ln

(
1 + e−δ/2p

)
· 2p

)
(11)

Calculating max∗ (x, y) in fixed-point representation therefore is done by

∗
max (xq, yq) = max (xq, yq) + v (|xq − yq|) (12)

Using the example in [11], let p = 3; from Eq. (10), m is computed to be 22. The
∗

max LUT is then
populated as seen in Table 1. If δ = |xq − yq| = 7, then the

∗
max operation would return max (xq, yq) + 3.

Any fixed-point number xq can be converted back to a floating-point value by x = xq/2p.

Table 1. The
∗

max look-up table with p = 3.

δ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

v (δ) 6 5 5 4 4 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1
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D. A Fast Clipping Circuit

We use a fast clipping circuit to realize two’s complement addition. If the result of the addition is larger
(or smaller) than what the assigned bit width can represent, that number is clipped to the maximum (or
minimum) possible quantized value given in Eq. (6). Conventional clipping circuits consist of comparators
that use either an XOR tree or subtractions to determine overflow. Since some of the trellis metrics in our
design are allowed to grow to a large width, propagation time through the carry out circuitry or levels of
XOR gates can be significant. Our circuit requires no comparators, and this reduces propagation delays.
A sample circuit for clipping the sum of two 3-bit numbers is illustrated in Fig. 3. Simple extensions can
be made for wider inputs. For positive sums, the first AND gate is used and the other two ignored. The
sum is clipped if the overflow bit is set. For negative sums, an inverted overflow bit indicates an overflow;
this check is implemented in the second AND gate. However, we also need to check the condition of a
negative eight; this occurs when both the sign bit and the overflow bit are set and the remaining bits are
all zeros (indicated by the third AND gate.) To clip a sum of more than two terms, allow another overflow
bit for each term and OR these extra overflow bits together (NAND for negative numbers) before feeding
the result into the AND gates along with the original overflow bit. The inputs to the second AND gate
are inverted.

E. Multi-Module Interleaver Design

The interleaver labeled as Π in Fig. 1 maps a bit in position x into a position f(x). The SCPPM
decoder uses a second-degree permutation polynomial of the form f(x) = (ax + bx2) modN , where N
is the number of bits in a codeword block. In MLCD, N is selected to be 15120 to allow flexibility in
the choice of inner and outer code rates. Using the ideas found in [12], Moision and Hamkins [5] set the

Fig. 3.  A fast 3-bit clipping circuit.
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coefficients of f (x) to be a = 11 and b = 210. Moreover, Barron and Robinson3 have demonstrated a
recursive implementation of the second-degree permutation polynomial that requires only additions to
facilitate hardware implementation.

For a PPM order of M = 64 or six bits per symbol, the inner decoder generates six LLRs each clock to
be written into the de-interleaver memory. If a serial interface is adopted for the de-interleaver, it would
take six clocks before a stage of LLR is stored. To reduce this latency from six clocks to one clock, we use
a scheme in which a set of six LLRs is written into the de-interleaver sequentially in one row all at once,
as illustrated in Fig. 4. The de-interleaver mapping is stored in the permuted address table. During outer
decoding, the LLRs are read using the address table in permuted order two at a time. This is done by
first picking the two (dual-ported BRAM) de-interleaver rows that contain the desired LLRs (in groups
of six) and then selecting the correct entry out of the row read. It can be shown that f (x) = 11x+210x2

maps to positions that are at least six apart, so no two reads will come from the same row. Even if there
is a read conflict, the dual-ported BRAM is designed to allow access to the same row.

The interleaver is implemented in the reverse manner as the interleaver and is illustrated in Fig. 5.
That is, a stage of two LLRs is written with permuted address into the interleaver. The interleaver is
divided into six dual-ported BRAMs, and the two LLRs are stored in one clock. If there is a write collision
of the two LLRs to the same BRAM, the dual-port memory realization still allows the writes to complete
in the same clock. We use a mapping to store the interleaved entries so that during reads the inner code
simply indexes into the same row at each of the six BRAMs and reads six LLR entries simultaneously
from the six distinct memory blocks.

The multi-module interleaver design reduces interleaver and de-interleaver access to one clock cycle
per trellis stage.

Fig. 4.  Block diagram of the de-interleaver.
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Fig. 5.  Block diagram of the interleaver.
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IV. Decoder Performance

The SCPPM decoder for M = 64 is currently implemented on a Xilinx Virtex II-8000 FPGA, speed
grade 4 (XC2V8000-4), which sits on a Nallatech BenDATA-WS board. The resource utilization is given in
Table 2. Blocks other than the inner and outer SISO modules that consume resources are the interleavers,
interface circuitry, and interface memory. The

∗
max look-up tables are implemented as read-only memories

(ROMs) using Xilinx internal distributed random access memory (RAM). This was made possible by the
small number of entries in the LUT. The channel symbol memory, β̄-storage memory, and interleaver
LUTs are all implemented using Xilinx internal, dual-ported BRAM. The equivalent gate count for our
design as reported by the Xilinx place and route tool is 6.5 million. On the grade-4 part, a maximum
clock speed of 23 MHz can be obtained, which translates into a throughput of 1.23 Mbps based on an
average of 7 decoding iterations. We can increase the data rate by using more advanced parts. On a
grade 5, a clock speed of 26 MHz and throughput of 1.39 Mbps can be achieved, and on a Virtex II-Pro
FPGA, a clock speed of 28 MHz and throughput of 1.5 Mbps can be achieved.

The FPGA decoder error performance for three MLCD operating points, nominal, best, and worst,
are given in Figs. 6 through 8. To save simulation time, we stopped after approximately 10 word er-
rors were obtained at high signal-to-noise ratios (SNRs). The slight increases in WER and BER at
high SNRs for the nominal and worst cases are due to this small number of word errors. These error
floors can be smoothed with longer simulation runs. The current decoder takes as input only the top eight
slot statistics, and the remaining slots are set to the mean of a noise slot [10]. Extension to a full-statistics

Table 2. SCPPM decoder on the Xilinx Virtex II-800 FPGA.

Full decoder Used/total Utilization Inner decoder Outer decoder Other blocks

BRAM 101/168 60% 19% of total resource 9% of total resource 32% of total resource

Flip flops 17311/93184 18% 16% 1% 1%

Slices 30174/46592 64% 52% 6% 6%
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decoder is straightforward and involves only the removal of a front-end de-multiplexer. This reduction
in hardware can decrease the total FPGA area usage and potentially increase the maximum achievable
clock speed.

An 8-bit quantization is used, of which 5 bits are for dynamic range and 3 bits are for binary precision.
In all three operating points, the partial-statistics, fixed-point FPGA decoder performs within a 0.2-dB
signal energy margin from the full-statistics floating-point decoder. The error floors observed in all cases
are caused by the small number of bits used to represent dynamic range. The error floor can be reduced
by increasing the dynamic range quantization to 6 bits or more.

There are potential design improvements that can increase the speed and throughput of the SCPPM
decoder. Because the outer code has three times the number of trellis stages as the inner code, we can
partition the outer code trellis into three segments and apply a window-based BCJR algorithm to all
segments simultaneously to reduce the decoding latency. The extra hardware incurred by this approach
is manageable since the outer decoder has a small resource utilization. We can also apply a window-based
BCJR to the inner code trellis and thus pipeline the ᾱ and β̄ computations so that the two circuits are
not idle at any time. Moreover, we can build the decoders using next-generation (Virtex IV) FPGAs
that are already available on the market. The first two enhancements could lead to 4 and 2 times the
speed-up, respectively, for a total increase by a factor of 8, and the third would more than double the
speed. Considering the baseline of 1.5 Mbps per decoder slice, the improved design in principle could run
at 24 Mbps per slice, and this would allow an aggregate 50 Mbps SCPPM decoder implementation that
requires only three FPGAs.

V. Summary

We demonstrated an FPGA implementation of a serially concatenated pulse-position modulation
(SCPPM) decoder for deep-space laser communication. With optimizations, our decoder can achieve
a throughput of 50 Mbps using three FPGAs and perform within 0.9 dB from the Shannon capacity in
floating-point and 1.2 dB in hardware at a BER of 10−6.
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